Math 579 Fall 2013 Exam 1 Solutions

- 1. 55 distinct integers are selected, all from [1, 100]. Prove that some pair differs by 12. Consider the following 52 pigeonholes: (1, 13), (2, 14), (3, 15), (4, 16), (5, 17), (6, 18), (7, 19), (8, 20), (9, 21), (10, 22), (11, 23), (12, 24), (25, 37), (26, 38), (27, 39), (28, 40), (29, 41), (30, 42), (31, 43), (32, 44), (33, 45), (34, 46), (35, 47), (36, 48), (49, 61), (50, 62), (51, 63), (52, 64), (53, 65), (54, 66), (55, 67), (56, 68), (57, 69), (58, 70), (59, 71), (60, 72), (73, 85), (74, 86), (75, 87), (76, 88), (77, 89), (78, 90), (79, 91), (80, 92), (81, 93), (82, 94), (83, 95), (84, 96), (97), (98), (99), (100). Each number from 1 to 100 appears exactly once, so there is a natural mapping of our 55 numbers into here. Since 55 > 52, by PHP there must be a collision; but the pigeonholes were chosen so that if two numbers are chosen from the same one, they differ by 12.
- 2. 300 points are placed within a unit cube. Prove that you can choose some 12 of these, all within 0.6 of each other.
 Divide the cube into 3 × 3 × 3 = 27 cubes, as a Rubik's cube. By PHP, one of these small cubes must contain at least [³⁰⁰/₂₇] = 12 points. This small cube has side length 1/3, hence diagonal length √(1/3)² + (1/3)² + (1/3)² ≈ 0.577; hence any pair of points within are at less than 0.6 apart.
- 3. Use the PHP to prove that there is some $n \in \mathbb{N}$ such that $44^n 1$ is divisible by 13. Consider $s_n = 44^n$. Divide each of s_1, s_2, \ldots, s_{14} by 13. Since only 13 remainders are possible, there are i, j with $1 \leq i < j \leq 14$ with s_i, s_j having the same remainder. We calculate $s_j - s_i = 13(q_j - q_i)$, so $13|(44^j - 44^i)$. Hence, $13|44^i(44^{j-i} - 1)$. Since gcd(13, 44) = 1, in fact $13|(44^{j-i} - 1)$, as desired.
- 4. 17 distinct integers are selected, all from [1,33]. Prove that some pair among these has greatest common divisor 1.

This is just a small tweak of problem 30. Consider the following 16 pigeonholes: (1, 2), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12), (13, 14), (15, 16), (17, 18), (19, 20), (21, 22), (23, 24), (25, 26), (27, 28), (29, 30), (31, 32, 33). Each number from 1 to 33 appears exactly once, so there is a natural mapping of our 17 numbers into here. Since 17 > 16, by PHP there must be a collision; but the pigeonholes were chosen so that any two numbers from the same one have gcd 1.

Alternate tweak: Start with (1, 2, 3), then $(4, 5), (6, 7), \dots, (32, 33)$.

5. Prove that there is a positive integer n such that the distance from $n\pi$ to the nearest integer is less than 10^{-100} .

Recall the following lemma, proved in class:

Lemma: Let $\alpha \in \mathbb{R}$, $Q \in \mathbb{N}$. Then there are $p, q \in \mathbb{N}$ satisfying $0 < q \leq Q$ and $|\alpha - \frac{p}{q}| < \frac{1}{Qq}$. Apply this lemma with $\alpha = \pi, Q = 10^{100}$; it gives you p, q so that $|\pi - \frac{p}{q}| < \frac{1}{10^{100}q}$. Multiply both sides by q to get $|\pi q - p| < 10^{-100}$, so we may take n = q.